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Abstract. We show that the stochastic dynamics of a large class of one-dimensional interacting particle
systems may be presented by integrable quantum spin Hamiltonians. Generalizing earlier work [1,2] we
present an alternative description of these processes in terms of a time-dependent operator algebra with
quadratic relations. These relations generate the Bethe ansatz equations for the spectrum and turn the
calculation of time-dependent expectation values into the problem of either finding representations of this
algebra or of solving functional equations for the initial values of the operators. We use both strategies
for the study of two specific models: (i) We construct a two-dimensional time-dependent representation
of the algebra for the symmetric exclusion process with open boundary conditions. In this way we obtain
new results on the dynamics of this system and on the eigenvectors and eigenvalues of the corresponding
quantum spin chain, which is the isotropic Heisenberg ferromagnet with non-diagonal, symmetry-breaking
boundary fields. (ii) We consider the non-equilibrium spin relaxation of Ising spins with zero-temperature
Glauber dynamics and an additional coupling to an infinite-temperature heat bath with Kawasaki dynam-
ics. We solve the functional equations arising from the algebraic description and show non-perturbatively
on the level of all finite-order correlation functions that the coupling to the infinite-temperature heat bath
does not change the late-time behaviour of the zero-temperature process. The associated quantum chain
is a non-hermitian anisotropic Heisenberg chain related to the seven-vertex model.

PACS. 05.40+j Fluctuation phenomena, random processes, and Brownian motion – 02.50.Ga Markov
processes – 05.70.Ln Nonequilibrium thermodynamics, irreversible processes

1 Stochastic dynamics and quantum systems

One-dimensional stochastic reaction-diffusion processes
are of both theoretical and experimental interest in a
very wide context. They are well-known models both for
reaction-diffusion mechanisms in physics and chemistry
and for stochastic spin flip dynamics [3]. More recently
they have appeared through various mappings also as
models for traffic flow [4–8], the kinetics of biopolymer-
ization [9,10], reptation of DNA in gels [11–16], interface
growth [17,18], diffusion in zeolites [19,20] and many other
phenomena. Even in relatively simple models of driven dif-
fusion such as the asymmetric exclusion process with open
boundaries one finds a very rich dynamical behaviour in-
volving dynamical and non-equilibrium phase transitions
of various kinds [21–24]. Exact solutions [3,25] allow for
a detailed understanding of cooperative phenomena in
these classical many-body systems and provide insight in
the role of inefficient diffusive mixing in diffusion-limited
chemical reactions, in the dynamics of shocks, and in other
fundamental mechanisms which determine the behaviour
of low-dimensional systems far from thermal equilibrium.

? Dedicated to J. Zittartz on the occasion of his 60th birthday
a e-mail: g.schuetz@kfa-juelich.de

A convenient and much used description of stochastic
processes is in terms of a master equation for the probabil-
ity distribution f(n; t) of the stochastic variables n. These
variables represent the states in which the system may be
found at any given instant of time. The master equation
encodes the transition probabilities p(n′ → n) of moving
from one state n′ to another state n in one time step:
the probability distribution f(n; t + ∆t) =

∑
n′ p(n

′ →

n)f(n′; t) is just the sum of probabilities of finding the
system in state n′ at time t times the respective transi-
tion probabilities p(n′ → n). Thus the master equation
expresses the probability of finding the system at time
t + ∆t in a given configuration n in terms of the proba-
bility distribution at time t. Such processes are Markov
processes which may be constructed for the description of
interacting particle systems [26].

Since the master equation is linear in the probabil-
ity distribution, it can be expressed as a vector equation
in a “quantum Hamiltonian formalism” by mapping each
state n of the system to a basis vector |n 〉 in a suitable
vector space X. Thus the probability distribution becomes
a vector | f(t) 〉 =

∑
n f(n; t)|n 〉 and the master equation

for a continuous-time process (∆t → 0) takes the form
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of a Schrödinger equation in imaginary time

d

dt
| f(t) 〉 = −H| f(t) 〉. (1)

For various interesting many-body systems the generator
H of the (classical) stochastic time evolution turns out to
be identical to the quantum Hamiltonian of spin chains
known from condensed matter physics [27–32] (see next
section). The ground state of a stochastic Hamiltonian
(which by construction has energy 0) corresponds to the
stationary probability distribution of the stochastic dy-
namics which is reached asymptotically at the late stages
of the time evolution. Through this somewhat surprising
connection to quantum spin systems the stochastic dy-
namics become tractable with the tool box of quantum
mechanics and progress may be achieved1.

A paradigmatic example of this relationship is the sym-
metric exclusion process [26,37]. In this lattice model par-
ticles hop between lattice sites k, l with rates pk,l = pl,k.
They interact via a hard-core repulsion which prevents the
occupation of a lattice site by more than one particle. The
stochastic quantum Hamiltonian obtained for this system
[28] is the Hamiltonian for the isotropic spin-(1/2) Heisen-
berg ferromagnet

H = −
1

2

∑
k,l

pk,l [σ
x
kσ

x
l + σykσ

y
l + σzkσ

z
l − 1] . (2)

The manifest SU(2)-symmetry of H (which is not recog-
nizable in the original master equation) can be used for ob-
taining exact results [29,38]. Moreover, in one dimension,
the system with nearest neighbour hopping is integrable
and can be solved by the Bethe ansatz [39].

The integrability is not a special feature of the sym-
metric exclusion process alone. Driven diffusion in one
dimension (pk,k+1/pk+1,k = q 6= 1) is described by the
XXZ quantum spin chain which differs from (2) by an
anisotropy ∆ = (q + q−1)/2 in the z−z coupling of the
spins [29]. Using the Bethe ansatz and related meth-
ods many new exact results particularly on the dynam-
ical properties of the process have been obtained [29,41–
46]. Moreover, it turns out that a 10-parameter class of
reaction-diffusion systems of identical particles [32] and
various systems of non-identical particles [31,47] are de-
scribed by integrable quantum chains. Unfortunately how-
ever, the Bethe ansatz requires knowledge of some refer-
ence eigenstate of H and integrability has so far failed to
provide constructive methods to calculate even the ground

1 For discrete time dynamics the vector form of the master
equation reads | f(t + ∆t) 〉 = T | f(t) 〉. For many interesting
systems in one dimension T is the transfer matrix of a two-
dimensional vertex model [33–36]. The frequently-used notion
“quantum Hamiltonian formalism” is somewhat misleading in
so far as for many stochastic applications the transition rates
result in coupling constants which makeH non-Hermitian. Fur-
ther, since f is a (real-valued) probability and not a (complex)
probability amplitude, the expectation values of the stochastic
process are not the expectation values normally calculated in
a quantum mechanical problem.

state of spin chains with boundary fields that destroy the
reference state. Such boundary fields are of importance in
stochastic dynamics of non-equilibrium systems as they
allow for a modelling of open systems which are in con-
tact with external particle reservoirs at their boundaries
and thus allow for maintaining a particle current through
the system.

In a very different approach the ground states of one-
dimensional spin Hamiltonians are formulated in terms of
matrix product states [48–51] where the ground state wave
function is expressed in terms of a trace over a product
of matrices. They may be seen as representations of an
operator algebra which is determined by the requirement
that by acting with the Hamiltonian on this state one
obtains an eigenstate (the ground state) of H. Applied
to stochastic Hamiltonians one obtains in this way the
stationary distribution of a stochastic process [52–57]2.

By constructing an infinite-dimensional representation
of the stationary matrix algebra for the asymmetric ex-
clusion process with open boundaries Derrida et al. [52]
produced the same exact results that were obtained in-
dependently by Schütz and Domany [22] using a different
method. In fact, with hindsight our treatment may be seen
as a representation-free solution of recursion relations that
one can derive from the matrix algebra. It is the aim of
this work to apply both strategies, viz. (i) construction of
a matrix representation or (ii) solution of equations result-
ing from the algebraic relations alone, to a matrix product
treatment of the dynamics of reaction-diffusion systems.
Specifically we consider the symmetric exclusion process
with open boundaries and a reaction-diffusion mechanism
which is equivalent to a spin relaxation model.

The extension of the stationary matrix approach of
Derrida et al. to a dynamical description requires one new
idea. This is the introduction of auxiliary matrices S, T
[1,2] which do not appear in the calculation of expecta-
tion values, but are necessary to formulate the dynami-
cal algebra which is determined such that the probability
distribution satisfies the full time-dependent master equa-
tion. The special case of this construction where S+T = 0
allowed among other things for the rederivation [2] of the
Bethe ansatz equations [58] for the spectrum in the sym-
metric case with open boundaries and for the rederivation
[59] of the spectrum in the asymmetric case with periodic
boundary conditions [43]. With the auxiliary matrices as
additional ingredient the extension of the dynamical ma-
trix product approach to reaction-diffusion systems be-
comes straightforward [60] (see below).

I will first show (Sect. 2) how reaction-diffusion sys-
tems of identical hard-core particles are related to a gen-
eralized Heisenberg chain. Its spectrum can be obtained
from the Bethe ansatz. This is a simplified rederivation
of some results obtained earlier [32]. Then in Section 3
I will generalize the operator approach to the general
reaction-diffusion problem of identical hard-core particles
with nearest neighbour interaction in one dimension. As
an application I will return to the symmetric exclusion

2 For non-periodic systems with boundary fields one does not
take a trace, but a suitably chosen scalar product [52].



G.M. Schütz: Dynamic matrix ansatz for integrable reaction-diffusion processes 591

Table 1. Bulk reaction and diffusion rates for nearest neighbour exclusion processes of identical particles. The numbers aij are
the rate of change of the occupation numbers {nk, nk+1}.

Process Rate Process Rate

01 → 10 a32 diffusion 10 → 01 a23 diffusion

11 → 01 a24 coagulation 01 → 11 a42 decoagulation

11 → 10 a34 coagulation 10 → 11 a43 decoagulation

00 → 01 a21 creation 01 → 00 a12 annihilation

00 → 10 a31 creation 10 → 00 a13 annihilation

00 → 11 a41 pair creation 11 → 00 a14 pair annihilation

process and present a two-dimensional representation of
the time-dependent operator algebra3. In Section 4, I will
solve a non-equilibrium spin relaxation model introduced
by Droz et al. [61] by solving functional equations arising
from the algebraic relations of the time-dependent ma-
trix algebra. This treatment does not require the calcu-
lation of representations of the algebra. In Section 5 the
main results are summarized and some open questions are
pointed out.

2 Integrable reaction-diffusion processes

We will consider stochastic reaction-diffusion processes of
identical particles with hard-core repulsion moving on a
ring with L sites. Even though part of our approach gen-
eralizes to arbitrary lattices [32] we will study here only
one-dimensional systems with nearest neighbour interac-
tion. The stochastic variables of the system are the oc-
cupation numbers n = {nk} where nk = 0, 1 indicates
whether site 1 ≤ k ≤ L in the lattice is occupied or empty.
At a given time t the state of the system is completely de-
scribed by the probability distribution f(n; t). In this class
of models there are ten possible reactions in addition to
right and left hopping (diffusion), so altogether one has to
specify 12 independent rates aij ≥ 0 (Tab. 1).

The stochastic dynamics are defined by the master
equation

d

dt
f(n; t) =

∑
n′

[w(n;n′)f(n′; t)− w(n′;n)f(n; t)] (3)

3 Sections 2 and 3 of this paper are not really new. They
constitute the bulk of the paper [60] which was presented at the
Satellite Meeting to Statphys 19 on Statistical Models, Yang-
Baxter Equation and Related Topics, at Nankai University,
Tianjin (August 1995).

where the reaction-diffusion rates w(n;n′) for a change
from configuration n′ → n are equal to the sum

L∑
k=1

{
δn′

k
,0δn′

k+1
,0

[
a21δnk,0δnk+1,1 + a31δnk,1δnk+1,0

+ a41δnk,1δnk+1,1

]
+ δn′

k
,0δn′

k+1
,1

[
a12δnk,0δnk+1,0

+ a32δnk,1δnk+1,0 + a42δnk,1δnk+1,1

]
+ δn′

k
,1δn′

k+1
,0

[
a13δnk,0δnk+1,0 + a23δnk,0δnk+1,1

+ a43δnk,1δnk+1,1

]
+ δn′

k
,1δn′

k+1
,1

[
a14δnk,0δnk+1,0

+ a24δnk,0δnk+1,1 + a34δnk,1δnk+1,0

]}
.

This somewhat lengthy expression becomes more com-
pact in the quantum Hamiltonian formalism (1): To each
configuration n one assigns a vector |n 〉 which, together
with the transposed vectors 〈n |, form an orthonormal
basis of (C2)⊗L. In spin language this corresponds to a
mapping to a spin 1/2 chain by identifying a vacancy
(particle) at site k with spin up (down) at this site. The
probability distribution is then given by the state vec-
tor | f(t) 〉 =

∑
n f(n; t)|n 〉 and the formal solution of

the master equation (1) in terms of the initial distribu-
tion | f(0) 〉 is given by | f(t) 〉 = exp(−Ht)| f(0) 〉. The
stochastic dynamics are defined by the master equation (1)
with [32]

H =
L∑
k=1

hk (4)

where the matrices hk act non-trivially only on sites
k, k + 1 and are given by

hk = −

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


k,k+1

(5)

with ajj = −
∑4

i=1
i6=j

aij .

The connection of H to the Heisenberg quantum
chain becomes apparent by the similarity transformation
H̃ = ΦV HV −1Φ−1 with V = exp(S+) where S+ =∑L
k=1 s

+
k and s±k = (σxk ± iσyk)/2 are the spin lowering
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and raising operators acting on site k and with Φ =
exp(E

∑
k kσ

z
k) where E is a suitably chosen constant [32].

On the ten parameter submanifold defined by

a34 = a21 + a41 + a12 + a32 − a23 − a43 − a14 (6)

a24 = a31 + a41 + a13 + a23 − a32 − a42 − a14. (7)

the transition matrices have now the structure h̃k =
hXXZk +h−k . Here hXXZk commutes with Sz =

∑L
k=1 σ

z
k/2

and h−k is a sum of two parts which lower the z-component
of the spin on sites k, k + 1 by one and two units respec-
tively. So one finds

H̃ = HXXZ +H− (8)

whereHXXZ is the Hamiltonian of the anisotropic Heisen-
berg ferromagnet with twisted boundary conditions in a
magnetic field. The crucial observation is that H− does
not change the spectrum of HXXZ , since HXXZ may be
block-diagonalized into blocks with fixed quantum number
Sz and H− connects only blocks of given Sz with blocks
with quantum numbers4 Sz − 1 and Sz − 2.

Quantities of interest are expectation values (i.e.
r-point correlation functions) 〈nk1(t) . . . nkr (t) 〉f0 =
〈 s |nk1 . . . nkre

−Ht| f(0) 〉 which give the probability of
finding particles on the set of sites {k1, . . . , kr} at time t,
if the initial distribution at time t = 0 was f0. Here 〈 s | =∑
n〈n | and nk = (1−σzk)/2 is the projector on states with

a particle on site k. From the Bethe ansatz one finds now
that the spectrum has an energy gap (i.e. inverse correla-
tion time) µ′ = 4a41+2(a21+a31)+a12+a13−a42−a43 ≥ 0.
If µ′ = 0 the dynamical exponent turns out to be z = 2.
Note also that V transforms a r-point density correlation
function into a matrix element in the sector with r down
spins. Since H− only creates down spins, only transformed
initial states with l ≤ r down spins will contribute to the
correlation function. This surprising simplification allows
for an exact calculation of the local average density for any
initial state even though we are dealing with a non-trivial
interacting many particle system [32].

3 The dynamic matrix ansatz

The results of the last section involve the constraints
(6, 7) and do not apply e.g. for the asymmetric exclu-
sion process. Also this model is integrable, but a calcula-
tion of time-dependent correlation functions has not yet
been achieved. In order to solve this problem we now for-
mulate a dynamic matrix ansatz for the general reaction-
diffusion system defined by (4) and (5), generalizing earlier
work [1,2] for diffusion only. Instead of periodic bound-
ary conditions we consider a system with open bound-
aries where particles are injected (absorbed) at site 1
with rate α (γ) and at site L with rate δ (β). Therefore

H = b1 + bL +
∑L−1
k=1 hk with suitably chosen boundary

matrices b1, bL [1].

4 This mechanism was first noticed in a similar context in
Alcaraz et al. [62].

The ansatz is to take | f(t) 〉 = 〈〈W |{
∏L
k=1(E(t) +

D(t)σ−k )}| 0 〉|V 〉〉/ZL where | 0 〉 is the state with all spins
up and D,E are time-dependent matrices satisfying an al-
gebra obtained from the master equation (1). The (time-
independent) vectors 〈〈W | and |V 〉〉 on which D and E
act are determined from the boundary terms in the mas-
ter equation and ZL = 〈〈W |CL|V 〉〉 where C = D + E
is a normalization. In this framework the r-point density
correlation function is given by 〈nk1(t) . . . nkr (t) 〉f0 =
〈〈W |Ck1−1DCk2−k1−1D . . .CL−kr |V 〉〉/ZL. Therefore,
given a matrix representation of the algebra satisfied
by D,E, the computation of time-dependent correlation
functions is reduced to the calculation of matrix elements
of a product of L matrices.

It is easy to see that (1) is solved if for each pair of
sites one satisfies

(
1

2

d

dt
+ hk)(E +Dσ−k )(E +Dσ−k+1)| 0 〉 =[

(S + Tσ−k )(E +Dσ−k+1)− (E +Dσ−k )(S + Tσ−k+1)
]
| 0 〉
(9)

where S, T are auxiliary operators satisfying

〈〈W |

[
(
1

2

d

dt
+ b1)(E +Dσ−1 ) + (S + Tσ−1 )| 0 〉

]
= 0

(10)[
(
1

2

d

dt
+ bL)(E +Dσ−L )− (S + Tσ−L )| 0 〉

]
|V 〉〉 = 0.

(11)

By comparing each of the four terms in (9) proportional
to | 0 〉, σ−k | 0 〉, σ

−
k+1| 0 〉 and σ−k σ

−
k+1| 0 〉 resp. one ob-

tains four quadratic relations for the operators D,E, S, T .
Equations (10) and (11) give two pairs of equations which
define 〈〈W | and |V 〉〉. Introducing

A(1) = −(a21+a31+a41)E2+a12ED+a13DE+a14D
2

(12)

B(1) = a21E
2−(a12+a32+a42)ED+a23DE+a24D

2

(13)

B(2) = a31E
2+a32ED−(a13+a23+a43)DE+a34D

2

(14)

A(2) = a41E
2+a42ED+a43DE−(a14+a24+a34)D2

(15)

one finds

1

2

d

dt
E2 − [S,E] = A(1) (16)

1

2

d

dt
ED − SD +ET = B(1) (17)

1

2

d

dt
DE − TE +DS = B(2) (18)

1

2

d

dt
D2 − [T,D] = A(2) (19)
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and

〈〈W |

{
1

2

d

dt
E − αE + γD + S

}
= 0 (20)

〈〈W |

{
1

2

d

dt
D + αE − γD + T

}
= 0 (21){

1

2

d

dt
E − δE + βD − S

}
|V 〉〉 = 0 (22){

1

2

d

dt
D + δE − βD − T

}
|V 〉〉 = 0. (23)

One may reduce this algebra by assuming that C
is time-independent and has a representation where it
is invertible. Equations (9) then imply [C,S + T ] = 0
and (10, 11) imply 〈〈W |(S+T ) = 0 = (S+T )|V 〉〉. This
can be solved by assuming S + T = 0, which, as I would
like to stress, is not the most general choice. Now one can
express S in terms of C andD and is left with only two fur-
ther relations to be satisfied by D and C and two relations
defining 〈〈W | and |V 〉〉. In particular, if (7) and (8) are

satisfied, there is one relation involving Ḋ which is linear
in D and one relation quadratic in D. For the symmetric
exclusion model a23 = a32 = 1/2 this dynamic algebra
yields eigenvalue equations for the corresponding XXX-
Hamiltonian with integrable, but non-diagonal, symmetry
breaking boundary fields [1,2]. However, no matrix rep-
resentation has been found yet. This raises the question
whether non-trivial representations do exist at all.

As I will show here for the first time, the answer to
this question is yes, at least with some restrictions on the
injection and absorption rates. Choosing a basis where C
is diagonal one finds the representation

C =

(
1 0
0 c

)
, D =

(
d λe−εt

0 cd

)
. (24)

with ε = (α+ β+ γ+ δ)/2, c = 1−α− γ = (1− β− δ)−1,
d = α/(α+ γ) = δ/(β + δ) and 〈〈W |, |V 〉〉 arbitrary but
〈〈W |V 〉〉 6= 0. In this representation λ is an arbitrary pa-
rameter specifying the initial distribution. One may also
use it for the construction of (right) eigenstates ofH, since
the expression 〈〈W |Ek1−1DEk2−k1−1 . . . EL−kr |V 〉〉 is a
superposition of wave functions Ψεi(k1, . . . , kr) of eigen-
states with eigenvalues εi. The argument is the position of
r down spins on sites k1, . . . , kr. Taking λ = 0 corresponds
to taking the stationary distribution as initial state. This
is an eigenstate with energy 0. The terms proportional to
λ give the wave function for an eigenstate with energy ε.
The quantity 1/(ln |c|) plays the role of a spatial correla-
tion length.

4 Non-equilibrium spin relaxation

A phenomenon of wide interest in physics and chemistry is
the growth of domains in non-equilibrium two-phase sys-
tems. The best-known example is perhaps the Ising model
with domains of up- and down spins, separated by domain

walls. The energy of the Ising model is given by the near-
est neighbour sum E = −J

∑
sisj . Since the creation of

a local domain wall costs an energy J the system tries to
organize itself at low temperature into large domains of
uniform magnetization. Starting from a high-temperature
equilibrium state with many domain walls and quenching
to low temperatures leads to a coarsening process: Small
domains of uniform magnetization merge to form larger
domains since then the total length of the domain walls
and thus the energy decreases.

Glauber [63] introduced spin-flip dynamics which en-
sure that the system reaches the equilibrium distribution
at temperature T = 1/β of the one-dimensional Ising
model. In this model a spin within a domain of equal mag-
netization is flipped with a rate µ = 1− tanhβJ , whereas
a spin in a region of opposite magnetization is flipped
with a rate λ = 1 + tanhβJ . At domain boundaries spins
are flipped with unit rate, since no change in energy is
involved. This process can be visualized in the following
way:

↑ ↑ ↑ → ↑ ↓ ↑ and ↓ ↓ ↓ → ↓ ↑ ↓ with rate µ

↑ ↓ ↑ → ↑ ↑ ↑ and ↓ ↑ ↓ → ↓ ↓ ↓ with rate λ

↑ ↑ ↓
 ↑ ↓ ↓ and ↓ ↓ ↑
 ↓ ↑ ↑ with rate 1.

Glauber dynamics can also be seen as a reaction-
diffusion system. One simply identifies an up-spin with
a vacancy and a down-spin with a particle. In one dimen-
sion at zero temperature the process can then be described
as follows:

A ∅ or ∅ A → A A with rate 1

A ∅ or ∅ A → ∅ ∅ with rate 1.

This can obtained by a translational rearrangement of
the three-site interactions in terms of two-site processes.
One realizes then that Glauber dynamics can be repre-
sented by a stochastic Hamiltonian of the form (4, 5) with
a12 = a13 = a42 = a43 = 1. Furthermore, these rates sat-
isfy the constraints (7). We stress that this relation to a
reaction-diffusion system is not really a mapping, but just
a certain choice of language which we use in order to make
contact with Sections 2 and 3. There are two different non-
trivial mappings [64,65] to the process of diffusion-limited
annihilation which has little in common with the process
described here. These mappings are useful as they show
that Glauber dynamics can be described and solved in
terms of free fermions [27,62,66–69] and that the associ-
ated quantum chain is a non-hermitian anisotropic Heisen-
berg chain related to the seven-vertex model [62].

The Glauber relaxation rules involve single spin
flips and thus do not conserve the total magnetization.
Kawasaki [70] introduced spin-exchange dynamics which
also lead to an equilibrium Ising distribution, but which
do conserve the total magnetization. At infinite tempera-
ture, these dynamics reduce to simple exchange of neigh-
bouring spins with some rate a23 = a32 = ζ, i.e. to the
symmetric exclusion process described above. Due to the
lack general theorems on the dynamics of non-equilibrium
systems it is now of interest to investigate a spin system
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the behaviour of which results from a coupling to two
heat baths at different temperatures — one leading to
zero-temperature Glauber dynamics, the other to infinite-
temperature Kawasaki dynamics [61]. In such a situation
there is a competition: The diffusion process tries to disor-
der the system, while the Glauber process tries to create
an ordered system of uniform structure. Hence the ques-
tions arise, which process wins, and how is the stationary
state reached.

In one dimension this problem was addressed by study-
ing the dynamical spin-spin (= particle-particle) correla-
tions for a translationally invariant initial state [61], using
the fact that the equations of motion for correlation func-
tions decouple into closed subsets. By solving the equa-
tions Droz et al. could show that at any (finite) value ζ of
the coupling strength the system orders and that the spin-
spin correlation function behaves at large times like the
zero-temperature Glauber correlator. Here we use the ma-
trix product ansatz to prove non-perturbatively that this
remains true for all correlation functions of finite order.
The leading contribution to time-dependent correlation
functions (for large times) is always the zero-temperature
Glauber correlation function [71]. Corrections resulting
from the coupling to the infinite-temperature heat bath
are of subleading order 1/

√
t (relative to the leading con-

tribution)5.

To prove our assertion we consider the matrix algebra
describing the process. Since we are more interested in
spin variables we introduce D̃ = C − 2D = E − D. We
restrict ourselves to translationally invariant initial states.
Because of translational invariance time-dependent spin
expectation values are given by a trace over matrices

〈σzk1
(t) . . . σzkr (t) 〉f0 =

Tr {Ck1−1D̃Ck2−k1−1D̃ . . . CL−kr}/ZL (25)

where ZL = Tr CL. We reduce the algebra (16) - (19) as in
the case of the symmetric exclusion process by setting S+
T = 0. Eliminating S leads then to the algebra generated
by C, D̃ and C−1 with the relations CC−1 = C−1C = 1,

5 We mention in passing that this process is a simple toy
model of growing tissue cell populations [72]. The decoagula-
tion process A∅, ∅A → AA with unit rate describes cell divi-
sion, while the particle hopping with rate ζ corresponds to the
diffusive motion of cells in their environment. In addition to
that we allow for a death process A∅, ∅A → ∅∅ with rate q
which kills both the original cell and its offspring during the
decoagulation (cell mitosis). It is intuitively clear that for q < 1
the cell population will grow until all space is covered, while
for q > 1 the population will eventually die out. Therefore it is
of interest to study the case q = 1 when creation of offsprings
and the death process balance each other. The process leads to
an ordered state also in three dimensions [73,74]. This implies
that either all tumor cells die, or, with equal probability, cover
the whole available space.

d/(dt)C = 0 and

d

dt
D̃ = (1 + ζ)

(
CD̃C−1 + C−1D̃C − 2D̃

)
(26)

2(1−∆) = D̃C−1D̃C−1+C−1D̃C−1D̃−2∆C−1D̃2C−1

(27)

with the constant ∆ = ζ/(1 + ζ) determined by coupling
ratio ζ. The r-point spin correlation function can now be
rewritten

〈σzk1
(t) . . . σzkr (t) 〉 = Tr {D̃k1 . . . D̃krC

L}/ZL (28)

where D̃k = Ck−1D̃C−k and ki+1 > ki. These relations
provide an alternative, purely algebraic definition of the
spin relaxation process.

Relation (26) is linear in D̃ and we procede by con-

structing the Fourier transforms Dp =
∑
k e

ipkD̃k to re-
formulate the algebra in terms of the Fourier components.
Since

CDpC
−1 = e−ipDp, (29)

the time-dependence of Dp is now simply obtained
from (26)

Dp(t) = e−εptDp(0) (30)

in terms of the initial matrix Dp(0) and the “energy”

εp = 2(1 + ζ)(1− cos p). (31)

From (27) follows 2(1 − ∆)δ(p) =
∫
dp′Dp′Dp−p′(1 +

e−ip − 2∆eip
′−ip). Since this relation holds for all times

(and all p), the integral can be divided into separate time-
components, each of which must vanish. If p1 and p2 are
non-zero this leads to

Dp1Dp2 = S(p2, p1)Dp2Dp1 (32)

with the two-body scattering matrix

S(p2, p1) = −
1 + eip1+ip2 − 2∆eip2

1 + eip1+ip2 − 2∆eip1
(33)

known from the usual anisotropic Heisenberg chain [40].
This relation for Dp is derived for the dynamic com-

ponents with p 6= 0. Hence the static term in the l.h.s.
of (27) does not reappear in (32), but in a different re-
lation involving the static parts D0 =

∑
nC

n−1DC−n

and I =
∑
n nC

n−1DC−n. These quantities need separate
treatment in a similar way as the static components of the
operators for the symmetric exclusion process with open
boundaries [25,75]. However, since the stationary state (all
spins up or all spins down) is not interesting we do not
consider the static Fourier components.

The momentum space formulation of the algebra pro-
vides another equivalent formulation of the process. To
calculate expectation values we do not search for a rep-
resentation of this algebra but use a different strategy.
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In terms of the Fourier components the correlator (28)
reads

〈σzk1
(t) . . . σzkr (t) 〉 =

(
m∏
i=1

∫
dpi

2π
e−piki−εpi t

)
T ({pi})

(34)

where the so far undetermined matrix element

T ({pi}) = Tr {Dp1(0) . . .Dpm(0)CL}/ZL (35)

depends only on the initial distribution.
First consider the one-point function 〈σzk(t) 〉. Because

of translational invariance, this local magnetization is in-
dependent of space. This is reflected in the invariance
of the trace under cyclic permutation. Thus (35) for the
one-point function together with (29) imply eip = e2ip =
e3ip = · · · = eipL = 1 and therefore T (p) = 2πcδ(p). This
yields 〈σzk(t) 〉 = c for all times and restates nothing but
the known result that the average magnetization remains
constant under the time evolution of the spin relaxation
model [61]. The initial magnetization m0 fixes c = m0.

We obtain a non-trivial result for the two-point cor-
relator. We use (29), (33) and the cyclic property of the
trace and find

T (p1, p2) = Tr {Dp1(0)Dp2(0)CL}/ZL

= S(p2, p1)Tr {Dp2Dp1C
L}/ZL

= eip1LS(p2, p1)Tr {Dp2C
LDp1}/ZL

= eip1LS(p2, p1)T (p1, p2). (36)

A similar cycling procedure gives a second relation

T (p1, p2) = eip2LS(p1, p2)T (p1, p2). (37)

Using S(p1, p2) = S−1(p2, p1) we conclude that T (p1, p2)
is non-zero only if the momenta p1,2 satisfy the Bethe-
ansatz equations [40]

eip1L = S(p1, p2) (38)

eip2L = S(p2, p1). (39)

Translational invariance requires also p1 + p2 = 0.
Moreover, the first of the equations (36) yields a func-

tional equation for the matrix element

T (p1, p2) = S(p2, p1)T (p2, p1). (40)

This functional equation for T (p1, p2) is solved by the
Bethe wave functions [39,76,77]

Ψp1,p2(l1, l2)=A(l1, l2)
(
eip1l1+ip2l2 +S(p2, p1)eip2l1+ip1l2

)
,

(41)

for k2 > k1 with some amplitude A(l1, l2) determined by
the initial value of the correlator. It can be calculated from
the integral representation (34) of the full time-dependent
correlator by setting t = 0.

For a finite system the integral has to be replaced by a
sum over the solutions of the Bethe ansatz equations (38,

39). However, in an infinite system the set of solutions be-
comes dense. The only subtlety arises then from the bound
states defined by the pole of the scattering amplitude S.
This pole corresponds to the two-particle bound state al-
ready known from the original solution of Bethe [39] for
∆ = 1. One can fix the contour of integration by setting
A(l1, l2) = 〈nl1(0)nl2(0) 〉. This gives

T (p1, p2) =
∑
l1,l2

〈nl1(0)nl2(0) 〉
(
eip1l1+ip2l2

+S(p2, p1)eip2l1+ip1l2
)

(42)

with the sum being restricted to the domain l2 > l1. We
prescribe the appropriate contour of integration by isolat-
ing in S the constant part S0 = −1 which corresponds to
non-interacting fermions. One writes

S(p2, p1) = −1 + 2∆(1− eip1−ip2)

×

∫ ∞
0

du e−u(eip1+e−ip2−2∆eip1−ip2). (43)

and integrates both p1 and p2 from 0 to 2π along the real
axis before integrating over u. Both this definition of the
integration and the choice for the amplitude A(l1, l2) en-
sure that the initial condition is indeed satisfied in the
physical domain k2 > k1, l2 > l1. With the constraint
p1 + p2 = 0 originating in translational invarinace one
recovers in this way the expression for the two-point cor-
relator derived by Droz et al. [61] by direct solution of the
equations of motion with generating function techniques.

Note that for the pure Glauber case ∆ = 0 and hence
S = S0 = −1. In this case the Dp anticommute and
can represented e.g. by a Jordan-Wigner transformation
of the usual local spin-1/2 raising or lowering operators
s±k . We recover in a surprising way the free fermion na-
ture of this process. However, since Glauber dynamics are
well-understood [71] we do not further pursue this matrix
representation. In the present context we are more inter-
ested in the observation that for large times only small
p1, p2 contribute to the integral (34). Making a substitu-
tion of variables pi → pi/

√
t and expanding for large t

leads to

S = −1 +O(t−1/2) (44)

for the late time behaviour of the scattering amplitude S
(43). This proves our assertion for the two-point function:
For large times the correction to the correlator due to
coupling to the infinite-temperature Kawasaki heat bath
is of subleading order O(t−1/2) for any finite coupling ζ.

Higher order correlation functions are treated analo-
gously. The permutation of Dp matrices using the ma-
trix relations (29, 33) yields the Bethe ansatz equations
and functional equations for the matrix elements T ({pi}).
For a r-point correlator this functional equation is solved
by the r-particle Bethe wave function [39,40]. Because of
the integrability the scattering amplitudes factorize into
products of two-body amplitudes. Thus for large times
the leading part comes from the free-fermion amplitude
S = −1 and therefore the leading part of the correlator
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is independent of the Kawasaki coupling ζ and given by
the pure Glauber correlation function. The leading cor-
rection which results from this coupling is of order t−1/2.
This proves our assertion.

5 Conclusions

A 10-parameter class of stochastic reaction-diffusion sys-
tems can be mapped by a similarity transformation to a
generalized Heisenberg quantum chain, the spectrum of
which can be obtained by the Bethe ansatz. It turns out
that time-dependent r-point density correlation functions
are given by the l ≤ r-magnon sectors. As an alterna-
tive to that approach we introduced a dynamic matrix
ansatz for the general 12-parameter model. This ansatz
reduces the calculation of all correlators to the calcula-
tion of certain matrix elements. These matrices satisfy an
infinite-dimensional algebra which is determined by the
bulk dynamics of the process. The boundary conditions
determine which matrix elements one has to take.

In the cases of the symmetric exclusion process and of
the non-equilibrium spin relaxation model of Droz et al.
the algebra satisfied by the matrices can be used to obtain
the spectrum of the corresponding quantum Hamiltonian.
We constructed a two-dimensional time-dependent matrix
representation of the algebra for the symmetric exclusion
process from which one obtains explicitly all r-point den-
sity correlators for a one-parameter class of initial states.
The corresponding eigenvectors of the Heisenberg chain
are the ground state with energy 0 and a bound state with
energy ε = (α+ β+ γ+ δ)/2. An alternative treatment of
the dynamical algebra exploits directly the algebraic rela-
tions which result in functional equations for the dynami-
cal part of the correlator. We have solved these equations
for the spin relaxation model in terms of Bethe wave func-
tions. We proved that independently of the coupling to the
infinite-temperature heat bath all r-point equal-time cor-
relation functions decay to leading order in time like the
zero-temperature Glauber correlators.

From a mathematical point of view the dynamical
matrix algebra and its representation theory is not yet
well-understood. The stationary version of the extended
algebra was considered by Hinrichsen et al. [78] who con-
structed a four-dimensional representation for a coagula-
tion/decoagulation model. Krebs and Sandow [56] could
prove that the stationary algebra extended with the aux-
iliary matrices forms an equivalent formulation of the sta-
tionary master equation. This guarantees the existence
of a representation for the general case. To date there is
no equivalent theorem for the dynamical algebra and no
representation theory. A second important question con-
cerns the relationship between the integrability of quan-
tum chains and the dynamic matrix ansatz which emerged
here and in other work [2,59,79]. The result of Krebs and
Sandow for the stationary algebra shows that there is no
general relationship between the possibility of an algebraic
description and the integrability of a system. Yet for in-
tegrable models the algebra is powerful enough not only
to recover the known Bethe ansatz equations but also to

obtain results which cannot be obtained using standard
Bethe ansatz techniques. This suggests that matrix al-
gebras describing integrable models have special, as yet
undiscovered properties.

I would like to thank D. Drasdo, V. Hakim, M. Evans, Z. Rácz
and R. Stinchcombe for useful and stimulating discussions.
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25. G.M. Schütz, Integrable Stochastic Many-Body Systems,
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